甘草黄酮的裂解(8):光甘草酮(Glabrone)
这类黄酮的解析真不简单,每天都要花我一个小时的时间,有点超出预期。下个系列一定选个简单点的,争取在15分钟内全部搞定。光甘草酮属于异黄酮,但C环开裂的离子丰度不高,如负离子模式中的m/z 213和正离子模式中的m/z 137,主要碎片与C环上的羰基和成环的异戊烯基有关。
Some thoughts on Mass Spectrometry and Modeling & Simulation
这类黄酮的解析真不简单,每天都要花我一个小时的时间,有点超出预期。下个系列一定选个简单点的,争取在15分钟内全部搞定。光甘草酮属于异黄酮,但C环开裂的离子丰度不高,如负离子模式中的m/z 213和正离子模式中的m/z 137,主要碎片与C环上的羰基和成环的异戊烯基有关。
光甘草素属于异黄烷-3-烯,同时B环上有一个环合的异戊烯单元,但它没有异戊烯的特征碎片离子m/z 56或42,这与其特殊的结构有关。在原来的文章中,作者虽然号称在补充材料中给出了其裂解途径,我感觉他只是虚晃一枪而已,
今天把裂解途径的图稍微美化了一下,看起来更舒服一些,负离子模式的裂解用绿色背景,正离子模式的裂解用黄色背景。芒柄花素属于异黄酮,结构很稳定,需要较高的能量才可以碎裂。
甘草酸虽不属于黄酮,但它是甘草中一个很重要的成分,我们顺便也分析下它的裂解途径。
今天这个化合物属于查儿酮,仅一个苷元,没有连接糖,看似简单,其实非常复杂,越是这种结构比较单一的,可能解析起来越难。
甘草苷在正负离子模式下均发生糖苷键断裂,断裂的类型和丢失的中性碎片完全一样,见上图。这种断裂方式在ESI质谱中最常见,我在硕士论文中将这类反应称为“1,3-断裂”,即发生断裂的键为第1个(起始端)和第3个根键(末端),同时两端的基团连接起来,中间的第2根键形成双键(形成一个新键)。
今天化合物的正负离子质谱图与昨天的第一个化合物非常接近,只是离子的丰度有些差别,它们为一对同分异构体。我感觉比较奇怪的是,这两个化合物都没有看到C环开裂的产物,难道是仪器或碰撞能量的缘故?若C环开环形成查儿酮,那么其稳定性自然会有较大提高,看不到母核碎片倒可以理解。
当我想好这个题目的时候,我顺便放狗搜了一下,找到几个非常对我胃口的博客(数据科学与R语言,Yihui Xie)。在看其中文档的过程中,我曾有短暂的失落感,“我在统计方面的知识太逊了”,不过我马上意识到自己又陷入了完美主义的坑,一个人怎能那方面都那么出色呢?在统计领域,我只要知道有哪些流行技术,哪些对我现在的研究课题有帮助,或者将来有帮助即可,只要分类整理入自己的笔记即可,完全可以等到需要的时候再去学。我自己喜欢的专业才是最根本的,这个是核心,其他只是点缀而已。我的目标是,“比药学家懂统计,比统计学家懂药学”!
从今天起,我们将介绍一系列甘草黄酮的裂解途径。甘草黄酮的主要类型有二氢黄酮、查儿酮、异黄酮和二氢异黄酮等,今天第一个化合物属于二氢黄酮,为甘草苷的葡萄糖的二位上又连了一个洋芹糖,不知道这样的双糖是否有个名字。
前面我们用Excel和Matlab实现了酶动力学的参数估算方法,今天我们介绍使用药动建模工具phoenix来进行酶动力学分析。正如我们前面提到的,phoenix不支持隐式方程的求参,所以需要对数据进行一下变通,通过观察IMM方程,我们发现,虽然C0和C1之间不能用显示方程表示,但是C1和t之间的关系却可以写成显示方程,一系列的C1和对应的反应时间t我们都知道,C0可以类比于PK中的给药剂量。