最近要写关于Caco-2的数据分析的一篇文章,检索到一篇关于Caco-2身世的文章,不敢独享。众所周知,我们所用的绝大多数药物为口服药物,而吸收是所有口服药物开发最重要的一环。在上世纪八十年代的时候,主要有两种动物模型可用于药物的吸收评价,一种是in situ的在体肠灌流,另一种是in vitro的离体肠段。这两种模型都有一些缺点,比如非人源,操作复杂,不能重复使用,难以规模化筛选,动物伦理等。 罗纳德教授(Ronald T. Borchardt)本是一位药物化学家,就是那种搞合成的,与细胞这些生物学内容并不搭噶。在进行了12年的药化研究以后,他被委任为堪萨斯大学药学院药化系的系主任,兼任Solon E. Summerfield杰出教授。罗纳德教授当时就意识到了生物技术、细胞和分子生物药剂学的重要性,他想拓展自己的研究领域。当时的一些制药企业,逐渐意识到ADME性质对新药开发的重要性,在考虑化合物对药效靶点的亲和性和专属性时,同时考虑其ADME性质。 参考文献:The AAPS Journal, Vol. 13, No. 3, September 2011 DOI: 10.1208/s12248-011-9283-8
Archive for September, 2013
前面解析过的咖啡酸甲酯的质谱图看着很别扭,而本文中的质谱数据却比较好看。在二级质谱图中,推测咖啡酸甲酯在环境中水的作用下,脱去甲基,生成咖啡酸m/z 179,其后裂解应与咖啡酸相同,但是与之间的结果比较后,发现此处的m/z 179可以生成m/z 161,但咖啡酸的二级质谱图中却没有m/z 161,点解呢?
丹酚酸F为咖啡酸的二聚体,主要在上图所示的位置发生断裂,脱去羧基,或者3,4-二羟基苯乙烯。
丹酚酸I的结构中有一咖啡酸单元接在另一个咖啡酸的苯环的对位,若是接在这个位置,则很难失去丹参素单元,因此二级质谱图中生成m/z 339是不合理的。
菊苣酸是2,3-二羟基琥珀酸与两分子咖啡酸成酯的衍生物,结构中的内酯键是主要的断裂位点,如上图所示。
该化合物比昨天的化合物多一个甲基而已,其MS2中有生成m/z 113,比较合理,推测多半是作者把数据拷贝错了。
越古老的东西,我们越相信它有灵性,如若没有灵性,怎可以在岁月的长河中生存下来呢!有些事情我宁愿相信它的存在,即便没有任何证据,比如穿越到古代。
我2001年的时候正值年少,精力充沛,感觉自己没有做不成的事,只要自己想做。但在那个信息极端闭塞的北方学校,贫乏的资源让我对外界有着极端的渴望,在那个环境下,要想靠循规蹈矩获得需要的东西是不可能的。
我觉得文献给出的数据有点乱,其中m/z 113应该是由m/z 311生成的,而不是由m/z 179生成的,或者是作者拷贝数据的时候错了,或者是离子残留造成的。m/z 为酒石酸的特征离子。
原儿茶醛生成m/z 91,初看真不好解释,查看文献,发现邹教授报道的文中,原儿茶醛生成m/z 109的碎片,这个比较好理解,而m/z 91相当于再脱一分子水,是否能在这种Agilent的离子阱中产生呢?为什么没有观测到m/z 109,值得去推敲。
Recent Comments