隐式方程的matlab实现:酶动力学(Integrated Michaelis-Menten Equation)的无偏参数求解

神奇而强大的计算分析平台 Google搜索了一下,发现隐式方程的求参问题有不少解决方案,matlab, R都可以实现。基本思路与我用Excel求参的方法一样,先编写一个函数来实现隐式方程的显示化,matlab中要用到fzero或fsolve(Excel中用的是单变量求解插件),然后再用非线性求解函数进行参数拟合。下面是积分后的米曼方程(IMM)的matlab求参代码: 先构造IMM函数: function y=IMM(p,x) %输入参数 Vm=p(1); Km=p(2); y=zeros(size(x)); NN=length(x); %不输出提示 opt = optimset('display','off'); for i=1:NN %就是用这个方程来求出某个x(i)下的解,y的初值设定为x(i)*0.9 y(i)=fzero(@(y) x(i) -y-Vm*15+Km*log(x(i)/y), x(i)*0.9, opt); end end 上面的函数写好后,保存,最后只要用下面一行命令就可以求解参数了: X=lsqcurvefit(@(params, xdata) IMM(params, xdata),...…

酶动力学数据分析工具:EnzySolver 1.0

EnzySolver 1.0界面 前段时间进行体内外相关性建模,遇到需用体外酶动力学参数预测体内的消除程度,在与做试验的同学讨论的时候,发现大家应用米曼方程并不注意前提条件,比如需控制反应时间或起始浓度,使反应结束时,底物的消除不要超过10%,否则计算的反应速率就与真正的起始速率有很大偏差,用这样获得的有偏差的起始速率与起始浓度求算Km和Vmax,必定难以获得真实的酶动力学参数。 从纯数学的角度讲,这种使用最多的用起始速率和起始浓度来求Km和Vman的方法,无论反应时间多少都存在偏差,只是反应时间短的时候偏差小而已,我们把这种方法本身引起的误差成为系统误差。那是不是存在一种没有系统误差的方法呢?关于酶动力学参数的计算方法在上世纪70-90年代,研究最多,但那时计算技术并不发达,所以研究者们设计了多种米曼方程的变体,还有很多作图的方法来求Km和Vmax。我认为现在的计算技术已经足够发达,肯定能实现没有系统偏差的计算方法。还有一种酶动力学研究方法,就是测定随着反应时间的延长,底物浓度的变化,再通过拟合积分以后的米曼方程进行求参。但随着反应时间的增长,酶的活性会发生变化,所以这样测定的浓度,越到后面越不能反应酶的活性。从实验的角度考虑,还是测定系列起始浓度,反应固定时间以后,测定剩余浓度(或代谢物浓度)的方法更靠谱。 假定起始浓度为C0,反应t时间以后的浓度变为C1,改变起始浓度C0,我们就可以得到系列的C1。根据积分以后的米曼方程,可以得到C0与C1的关系如下: Integrated Michaelis-Menten Equation (IMM) 这个方程为隐式方程,不能表示为显示方程,也就是y=f(x)这种形式。现有的建模工具,就我所知,都不支持隐式方程的求参,也许存在这样的工具,但我不知道。我直觉上感觉用Excel可以实现,所以在一个月前开始用Excel的Solver和单变量求解工具设计能够对这样的隐式方程求参的算法,大约用了1周多时间,就写好了一个算法。模拟的结果显示,当数据中不含噪音时,可以无偏的求到正确的参数,而一但增加噪音,求参结果就显得非常不可靠,我一度认为这正式IMM的缺点。此外,我还设计另一种与现有的算法(TM)偏差相反的算法PM,希望通过两种算法的平均,达到偏差消除,从而求出正确的解。就在昨天,我还设计了Robustness参数,APDD, APF等参数,通过比较它们之间的大小,自动判断哪种算法获得的结果更可靠。本打算今天下午的Seminar向老板汇报工作,但老板有事外出,Seminar被取消。早知Seminar被取消的话,我这两天就不用那么辛苦赶工了,心里有种极放松的感觉。暂时没有其他的事情,我就在EnzySolver上模拟不同的数据,看看结果如何,可能存在什么规律。突然,我发现前面设计的求解算法有问题,当C1这一列没有噪音的时候,只要一个循环就可以得到正确的解,而当它有噪音时,整个算法Solver仅相当于只迭代一次,怪不得误差会比较大呢。在晚上回家前,终于完成了那个迭代算法,模拟结果显示,即便存在很大噪音,其求的参数总是在各种算法中最接近真实值的,竟然比我用群体的方法(理论上考虑了误差模型)还精确,不可思议。我本来打算用Phoenix的NLME方法作为压轴的终极解决方案呢。我暂不知道我设计这种隐式方程的求参方法是否别人已经发表过,也不知道它是否可以用于其他隐式方程,是否具有通用性,这些都需要后面的工具进一步验证。 –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。

苯乙基色原酮的裂解第10期:6,7-dimethoxy-2-phenethyl-4H-chromen-4-one

甲基自由基 今天是苯乙基色原酮系列的最后一个化合物,晚上还有重要的任务,需尽快完成今天的更新。 QD-14与第5期的QD-7的B还上均没有取代基,只能发生C11-C12均裂,生成自由基离子,然后质子分别挂在两侧,得到m/z 220和91。QD-14结构上有两个甲氧基,照理应该看到掉甲基自由基的碎片呀,当我用自己2.5的眼找了一遍后,还真发现一个m/z 205,你看到了吗? 至此,苯乙基色原酮的系列化合物的裂解规律我们都介绍完毕了,感兴趣的你是否学到一些质谱解析相关的知识了呢?这类化合物的裂解比较简单,以这样的一类化合物开始,比较容易产生成就感,后面我会逐步介绍一些比较难的例子,如果一路看下去,那些难得其实也不难,真正难的是解不出来的!也许后面我该多穿插介绍一下我以前在建模方面的工作,毕竟MS的含义是二重的,而我这段时间又主要再搞建模,有了不少积累,慢慢放出来吧。 MS2 of QD-14 ===================================================== 化合物:6,7-dimethoxy-2-phenethyl-4H-chromen-4-one(QD-14) SMILES: O=C1C2=CC(OC)=C(OC)C=C2OC(CCC3=CC=CC=C3)=C1 InChIKey: MVQOWXHYPYRBOE-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。

苯乙基色原酮的裂解第9期:2-(2-hydroxy-2-(4-hydroxyphenyl)ethyl)-4H-chromen-4-one

分子内羟基迁移 QD-22的结构仅比昨天的QD-11少一个甲基,所以它们的MS2看上去非常相似,基峰均为m/z 161。由于B环上的甲氧基变成成了羟基,对应的含B环碎片减少14Da,即m/z 123。比较奇怪的是QD-22多了一个碎片m/z 107。前面介绍的QD-27-1也具有4'-OH,同样生成了m/z 107,可以推测m/z 107与B环的对位羟基有关。经过半个多小时的思索,我构建了一个可能的裂解途径,见上图。质子化的12-OH进攻旁边的1'位,形成环氧中间体,同时质子转移到2'位C原子上;环氧开环,正电荷转移到C12原子;下一步,C-1'上的羟基转移到C-11上,C11-C12键断裂,这时就生成了m/z 107和中性碎片176。这个途径不如C11-C12直接断裂容易,生成的碎片离子的丰度很低。当我想出了这个裂解途径以后,又想到,假如这个途径是正确的,一定存在电荷在A,C环上的碎片离子,正如C11-C12断裂以后,电荷可以分别存在两侧的碎片上,因此应该存在m/z 177的碎片离子(即中性碎片176质子化的碎片)。经仔细观察QD-22的MS2,确实在m/z 177的位置上,发现极弱的信号。当然这也有可能是背景噪音,需要进一步实验验证。 QD-22的MS2 在过去的一个多月中,我在鼓捣酶动力学数据的分析方法,希望找到一种通用的、没有系统偏差的算法。前些日子一直没有进展,昨天学习了群体药动学技术以后,突然领悟到,这个酶动力学测定的实验,可看作大量受试者仅采一个时间点血样的实验设计,这不正是群体药动可以分析的数据吗?!经过简单的数据格式化,今天终于获得了一个比较满意的结果。根据模拟数据的结果,加上噪音后的数据,群体的方法仍可以准确估算参数,大大由于PM, TM, IMM等方法。 ===================================================== 化合物:2-(2-hydroxy-2-(4-hydroxyphenyl)ethyl)-4H-chromen-4-one(QD-22) SMILES: O=C1C2=CC=CC=C2OC(CC(O)C3=CC=C(O)C=C3)=C1 InChIKey: UNNQNQLODLRMBI-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。  

苯乙基色原酮的裂解第8期:2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)-4H-chromen-4-one

杂原子诱导效应 QD-11的羟基在C12上,其alpha位容易发生诱导断裂,这是由于氧原子吸电子效应造成的。这种直接的效应要大于羟基在B环上形成大共轭对C11-C12键的影响,在其MS2中可以看到m/z 161为基峰。 MS2 of QD-11 这两天精神不好,可能是晚上空调开太低了,身体有点吃不消。无论如何,还是加强锻炼吧,一会去跑跑步! ===================================================== 化合物:2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)-4H-chromen-4-one(QD-11) SMILES: O=C1C2=CC=CC=C2OC(CC(O)C3=CC=C(OC)C=C3)=C1 InChIKey: SECWNQJSDGRXOQ-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。

苯乙基色原酮的裂解第7期:2-(4-hydroxy-3-methoxyphenethyl)-4H-chromen-4-one

不同异构体,相同的质谱图 今天的化合物与昨天化合物的质谱图几乎完全相同,因为B环上的羟基在邻位或对位,由于邻对位效应,C11-C12断裂以后生成的 结构非常稳定,形成一个大共轭体系,一般这样的反应路径都占绝对优势。 晚上继续跑步,坚持、坚持!人与神的区别是,神每天都进步一点,从不反复。 ===================================================== 化合物:2-(4-hydroxy-3-methoxyphenethyl)-4H-chromen-4-one(QD-19) SMILES: O=C1C2=CC=CC=C2OC(CCC3=CC(OC)=C(O)C=C3)=C1 InChIKey: WGZABIWCMKFTCQ-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。

苯乙基色原酮的裂解第6期:2-(2-hydroxy-4-methoxyphenethyl)-4H-chromen-4-one

苄基alpha位断裂 今天去了一趟澳门,大三巴山头的风景不错,空气也很好,真想懒懒的在那里看一下午书,但同行的两位只想早点回家,没有办法。我对澳门比较失望的是其“美食”,吃了两个版本的猪扒包,都难以下咽,还尝试了胡椒饼,刚吃的时候,味道还可以,但吃完后胃里难受,与我在内地吃了油炸食品一个感觉,我知道这个不地道了。回来香港以后,感觉澳门好“县城”呀,并且澳门已经被内地人同化的没有根基了。赌场中>90%都是内地人(VIP室中的比例内地人更高);外面的店家都是普通话,而在香港,粤语还是占绝对优势的,很多店的人不会说普通话滴;香港的店种类更多,更繁华,尤其当我从信德中心坐BUS一路回第一城,路上景象真是丰富极了,而澳门除了赌场比较风光外,其他的店面都很“县城”。 今天是色原酮系列的第6个化合物,其裂解途径有两条与第1个化合物相同,因为这个化合物仅是在4'-位多了一个甲氧基,具体裂解途径见上图,没什么需要详细说的。 QD-15的MS2 ===================================================== 化合物:2-(2-hydroxy-4-methoxyphenethyl)-4H-chromen-4-one(QD-15) SMILES: O=C1C2=CC=CC=C2OC(CCC3=C(O)C=C(OC)C=C3)=C1 InChIKey: KDUOFKPSBWYDDQ-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。

苯乙基色原酮的裂解第5期:6-hydroxy-2-phenethyl-4H-chromen-4-one

电子云密度的影响 解析到今天这个结构,可以确认我们前面的解析是没有大问题的。这里主要涉及同系列化合物的共有裂解途径问题,这要 求我们在解析的时候,不要孤立的去看一个化合物,而是将结构类似的系列化合物放在一起解析,它们呈现的共同裂解途径经可以互相印证。比如今天这个化合 物 的6位多了一个羟基,故其生成的C11-C12断裂的含A环碎片的质荷比比前面几个化合物多了16Da(m/z  176),与第4个化合物相比,这 个化合物的B环没有变化,因此同样生成了m/z 91。将这些共有的特征放在一起,我们就会对自己的解析更加自信。 另一个引起我们思考的问 题是,虽然前面这些化合物的主要裂解(C11-C12断裂)均相同,但由于A环或B环上取代基的不同,对某些碎片的生成产生 很大影响,比如今天这个化合 物比昨天的化合物多了1个羟基,导致C环的RDA裂解的碎片看不到了,m/z 173也看不到了(当然如果有的话,应是m/z   189),为什么会出 现这样的结果?如果需要非常精密的、定量化的解释,需要用Gaussian计算羟基取代前后的电子云密度和键能的变化;此外,我们也 可以粗略的根据经验 规则进行分析,羟基上有一对平行于苯环平面的孤对电子,其可与苯环共轭体系中的pi电子发生共轭,O-C键的双键性增强,而邻位的 C=C键变弱,  这 个强弱的变化在共轭体系中是交替传递的,即强弱强弱,这导致C1-C2和C3-C4两个键的电子云密度正好增加(双键性增强),因此RDA裂解需要的 能 垒增大,生成的碎片丰度降低或消失。如果再仔细看今天这个化合物的MS2,仍可以在m/z 137,  189的位置看到非常弱的信号。明白了这个原 理,我们可以推测,如果羟基是连在A环的5位或7位,那么RDA裂解就更容易发生。我是顺序解析这些化合物 的,每天看一个,后面的化合物还没有看,不知 道是否有这样取代的化合物。 QD-7的MS2 ===================================================== 化合物:6-hydroxy-2-phenethyl-4H-chromen-4-one (QD-7) SMILES: O=C1C2=CC(O)=CC=C2OC(CCC3=CC=CC=C3)=C1 InChIKey: QIYUDFMVCDXKBQ-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。

苯乙基色原酮的裂解第4期:2-phenethyl-4H-chromen-4-one

RDA裂解 今天的第4个结构中除了C11-C12断裂的碎片外,还有与化合物2相同的碎片m/z 121。前天该碎片被归属为C2-C11断裂生成的含B环碎片,今天综合化合物4来看,前面的归属有待商榷,m/z 121还有可能是C环RDA裂解的碎片,这两个碎片的质量数都为121,仅能通过高分辨质谱才能区分,等待有缘人去验证吧。 QD-10的二级质谱图 ===================================================== 化合物:2-phenethyl-4H-chromen-4-one (QD-10) SMILES: O=C1C2=CC=CC=C2OC(CCC3=CC=CC=C3)=C1 InChIKey: VNZNWFQJBFLELF-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。

苯乙基色原酮的裂解第3期:2-(4-hydroxyphenethyl)-4H-chromen-4-one

最稳定的对烯苯醌结构 今天是苯乙基色原酮系列的第3个化合物,看过前两天的解析,这个就顺理成章了,根本不需要过多解释。只要你看下那个106中性丢失的结构,就知道这货非常稳定,以至于没有其他可与其竞争,在质谱图上只看到C11-C12断裂后的碎片。这里要提一个原则,那就是使产物碎片(包括碎片离子和中性丢失)尽可能的共轭稳定,这算一个质谱解析的捷径吧。 ===================================================== 化合物:2-(4-hydroxyphenethyl)-4H-chromen-4-one (QD-27-1) SMILES: O=C1C2=CC=CC=C2OC(CCC3=CC=C(O)C=C3)=C1 InChIKey: GMWDRCZOTXAUBL-UHFFFAOYSA-N 参考文献:10.1002/jms.3242   –EOF– 文章来自,微信号:MS4Fun,不定期发布自己在质谱应用和建模&模拟方面遇到的一些有趣的事情,欢迎分享与推荐。